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Abstract

Background

Progress toward reducing the malaria burden in Africa has been measured, or modeled,
using datasets with relatively short time-windows. These restricted temporal analyses may
miss the wider context of longer-term cycles of malaria risk and hence may lead to incorrect
inferences regarding the impact of intervention.

Methods

1147 age-corrected Plasmodium falciparum parasite prevalence (PfPR».10) surveys among
rural communities along the Kenyan coast were assembled from 1974 to 2014. A Bayesian
conditional autoregressive generalized linear mixed model was used to interpolate to 279
small areas for each of the 41 years since 1974. Best-fit polynomial splined curves of chang-
ing PfPR,.10 were compared to a sequence of plausible explanatory variables related to
rainfall, drug resistance and insecticide-treated bed net (ITN) use.

Results

P. falciparum parasite prevalence initially rose from 1974 to 1987, dipped in 1991-92 but re-
mained high until 1998. From 1998 onwards prevalence began to decline until 2011, then
began to rise through to 2014. This major decline occurred before ITNs were widely distrib-
uted and variation in rainfall coincided with some, but not all, short-term transmission cycles.
Emerging resistance to chloroquine and introduction of sulfadoxine/pyrimethamine provid-
ed plausible explanations for the rise and fall of malaria transmission along the Kenyan
coast.
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Conclusions

Progress towards elimination might not be as predictable as we would like, where natural
and extrinsic cycles of transmission confound evaluations of the effect of interventions. De-
ciding where a country lies on an elimination pathway requires careful empiric observation
of the long-term epidemiology of malaria transmission.

Introduction

Following the recent launch of a global effort to reduce the malaria burden in Africa [1-2], bil-
lions of USD overseas development assistance have been invested in scaling up vector control
and efficacious drug delivery [3]. The changing political commitment, funding and interven-
tion coverage have all been associated with modeled declines in malaria mortality [3-5]. This
evidence has fueled a renewed expectation that global eradication can be achieved in the next
few decades [6]. Malaria, however, is a vector borne disease, subject to intrinsic cycles of varia-
tion driven by climate, changes in human land use and the efficacy and coverage of interven-
tions that target the parasite and vector. These factors vary in space, defining the diversity of
malaria transmission across the African continent, and with time. One important lesson of the
first Global Malaria Eradication effort, was that elimination cannot be achieved everywhere
with the same interventions within the same time frame. It is therefore not surprising that not
every country in Africa has witnessed a decline in malaria transmission since 2000, and that
even within countries witnessing a decline, some areas have been resilient to change despite
equivalent levels of vector control coverage within their national borders [7].

Without a clearer understanding of short-term and long-term cycles of malaria risk we
might mistakenly attribute declining (or increasing) trends in malaria transmission to coinci-
dent interventions, and more importantly we will be unable to predict the future landscape of
malaria risk necessary to plan for elimination. Here we analyze 40 years of data on Plasmodium
falciparum prevalence along the Kenyan Coast, a geographical area subject to a single climate
system and malaria control policy introduction. In the absence of a controlled experiment we
examine long-term changes in malaria prevalence against a plausibility framework [8-9] that
defines the temporal factors that might provide insight into long- versus short-term malaria
cycles.

Materials and Methods
The Kenyan Coast

Kilifi, Kwale and Mombasa Counties occupy 21,000 km?” of tropical moist deciduous forest, sa-
vanna and dry thorn bush, seasonal swamps and a number of plantations (sisal, coconut and
cashew). The area is a flat plain with the highest altitude reaching 845 metres above sea level,
coursed by three major river systems that feed into the Indian Ocean through networks of sea-
sonal streams (Fig 1). 90% of the population reside within 50 km of the coastline, including ten
major urban extents that cover Mombasa, Kilifi, Malindi, Mtwapa, Ukunda and Msambweni
(Fig 1). The area is inhabited predominantly by the Mijikenda. The rural communities are
largely subsistence farmers of maize, millet, cassava and beans. The major influence on the
Kenyan coast's weather is the Inter-tropical Convergence Zone of the North East and South
East Trade Winds. The hot northeast monsoon (kaskazi) from the Persian Gulf occurs from
November to March/April and includes the ‘short rains’, variably between November and
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Fig 1. The Kenyan coast comprising of three counties (Kilifi, Mombasa and Kwale). Showing population density per 100 m? (yellow 0 through dark blue
203 people per 100 m?) developed from high spatial resolution 1999 census data [13]; urban centres (Grey) defined by the national census bureau [14] where
digitized boundaries undertaken using Google Earth, and used to exclude parasite prevalence data; the location of meteorological stations (Black triangles);

major river systems (Blue).

doi:10.1371/journal.pone.0128792.g001

December. The moist monsoon blowing in from the southeast (kusi) occurs from April/May to
October leading to the heaviest rain, referred to as the ‘long rains’ (March, April, May and
June) [10]. The dominant malaria vector species groups are Anopheles gambiae and An. funes-
tus [11-12]. The former predominates, with the sibling species An. merus occupying a narrow
ecological niche close to the Indian Ocean coastline. Within the An. gambiae species group,
An. arabiensis is more common in the northern parts of Kilifi County and An. gambiae s.s.
(both M and S forms) is more common further south toward the Tanzanian border [12].

Parasite prevalence survey data assembly

Information from parasite prevalence surveys undertaken since 1974 that formed part of rou-
tine surveillance or research enquiry among communities and school children in three coastal
counties were assembled from national Ministry of Health archives, direct extraction from
published reports or additional correspondence with research centres located on the Kenyan
coast (S1 Text). Information from each survey included the date of examination, the age range
of subjects included, the number examined, the number found positive for P. falciparum infec-
tion and the longitude and latitude of the survey location (S1 Text). Data were excluded if the
survey could not be geo-coded (4), surveys were located in contemporary urban extents, to re-
move the long-term influence of urbanization on changing malaria risks (174), or where sam-
ples included less than 10 subjects (11).

Spatial-temporal analysis

The three counties comprise of 279 sub-locations, the lowest administrative units, with a medi-
an area of 26 km”. Because of differences between surveys in the age ranges of sampled popula-
tions, the input P. falciparum survey data were corrected to a single standardized age range of
2-10 years (PfPR,_10), using established catalytic conversion Muench models [15]. The rural
parasite prevalence surveys were unevenly distributed in both time (month and year) and
space (sub-location). To provide an analysis of temporal changes, adjusted for location of the
survey, we used a Bayesian conditional autoregressive (CAR) generalized linear mixed (GLM)
model with spatial and temporal effects to predict PfPR, 1, for each of the 279 sub-locations
for every year 1974-2014. The CAR-GLM model assumes that the number of children from 2
years to below 10 years of age that are positive in a sub-location and any time is a binomial ran-
dom variable that is a function of the probability of infection and the number of children tested
for malaria at each location and time. The logistic model incorporates the spatial autocorrela-
tions as structured and unstructured spatial effects and time as a second order autoregressive
effects within each of the 279 polygons. The structured and unstructured spatial effects were as-
signed a Markov random field prior and independent and identically distributed Gaussian re-
spectively. The temporal random effect was assumed to be random walk model of order 2.
Bayesian inference was achieved using integrated nested Laplace approximation (INLA) in R
[16-17]. Model posterior output included the median, the 25™ and 75" percentiles of PfPR, j,.
Full model specifications are provided in the SI Text and model outputs provided in S1 Data
for each sub location (S2 Data). A Generalized Additive Model [18] was used to smooth the
279 annual posterior median predictions of PfPR;_;,. The GAM model assumed a Gaussian
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distribution for the median, the 25™ and 75 percentiles of the predicted PfPR,_,, and applied
a segmented cubic polynomial smoothing spline.

Assembly of plausibility factors

Monthly rainfall data, January 1970 to December 2014 (45 years), were assembled from eight
range gauges situated across the densely populated areas shown in Fig 1. Complete data was
available for 4130 (96%) of the 4320 possible months. Monthly means across each of the mete-
orological sites were computed to provide long-term percentage anomalies for each year and
for each March-June long rains, linked to changes in sea surface temperatures in the Indian
Ocean that define climate patterns along the East African coast [19].

The annual quantities of nets, re-treatments and long-lasting net distributions were assem-
bled from month-commodity-location specific databases of social marketing agencies and the
Ministry of Health between 1999 and 2014. We have assumed that all nets in circulation since
May 2005 have been Long-Lasting Treated Net (LLIN) [20]. Nets before 2005 would have re-
quired re-treatment every six months and we have presumed effectiveness only for one 12
month cycle for each net distributed. For LLIN we have assumed, in line with expert opinion,
that 92% of LLINs would remain optimally "efficacious", retention of pyrethroid concentration
and durability of netting, during the first year of use; 80% during the second year of use; 50%
during the third year of use; and ineffective in year 4 [21]. Data were assembled to show cumu-
lative monthly distributions and availability of "effective” nets per capita population derived
from population census growth models 1989-1999-2009 [14, 22] (S3 Data). Data on reported
use of an ITN the preceding night by members of all ages within rural clusters of sampled
households were identified from seven national surveys, in 2003, 2005, 2007, 2008, 2009, 2010
[23-28] (S3 Data). For 2014, we have used unpublished data on the reported use of an LLIN
last night recorded during surveys of 11618 school children attending 117 rural schools along
the Kenyan coast [Mwandawiro & Snow, unpublished data].

Using published and unpublished data from various sites along the Kenyan coast we have,
where possible, represented the speed of emerging chloroquine (CQ) and sulphadoxine-pyri-
methamine (SP) failure as the proportions of parasitaemic children receiving standard thera-
peutic doses unable to clear infections, or observed recrudescence, by day 7. Data used to
construct the plausibility framework is provided in S3 Data.

Ethics

Here we have used previously published and unpublished data. For each survey various ethical
approvals were sought from national institutional review boards. Where possible these have
been listed in the Supporting Information accompanying the search procedures for identifying
each survey report (SI Text). In no instance were individual patient level data used, only aggre-
gates per village or school cluster.

Results
Cycles of changing parasite prevalence: 1974-2014

We have assembled information on the prevalence of P. falciparum infection from 1144 sur-
veys undertaken among rural communities along the Kenyan coast between 1974 and 2014
(Fig 2), making it one of the richest long-term time-series data on malaria prevalence within a
constrained area anywhere in Africa. Using a Bayesian model-based geostatistical approach ap-
plied to each time and geo-located prevalence survey within 279 administrative polygons we
show that parasite transmission intensity initially rose in two steps, gradually from 1974 to
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Fig 2. Location of age-corrected parasite prevalence (PfPR,.1o) with the highest recorded estimate of prevalence on top (Left hand panel) and
lowest PfPR,.; estimate on top (Right hand panel) to distinguish prevalence at similar locations with time. Data displayed against 279 fifth level
census administrative units used to make monthly median malaria predictions (see Methods).

doi:10.1371/journal.pone.0128792.g002

1980 and more sharply from 1982 to 1987 (Fig 3). P. falciparum parasite prevalence remained
high for at least another decade, with a dip 1991-1992. From 1998 prevalence began a decline
through to 2010, corresponding to previous reports of declining paediatic malaria admissions
in Kilifi [29-30], and declining admissions at hospitals in Malindi and Msambweni [30] and
declining infection prevalence among pregnant women in the southern part of the coast [31].
The decline ends in 2011 and begins to rise through to 2014 (Fig 3).

A plausibility framework

Fig 4 considers the combination of factors which might explain the changes witnessed in para-
site prevalence since 1974.

Rainfall. The period 1974 to 1981 was characterized overall by lower than average long-
term annual and long-rains precipitation, while malaria prevalence rose from 1974 to 1978. Ex-
cess rainfall witnessed in 1982, followed by years of higher than average rains might have con-
tributed to the increasing malaria prevalence curve through to 1987. The high malaria
prevalence through to 1993 was however maintained during periods of drought. Abnormally
high rainfall occurred in 1994, and the El Niflo excessive rains in 1997, both correspond with
peaks in parasite prevalence within the decade-long plateau. The subsequent downward
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trajectory of parasite prevalence through to 2011 occurred at a time when rainfall was above
normal, but continued its decline from 2002-2006 at a time marked by drought. Heavy rainfall
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doi:10.1371/journal.pone.0128792.9004
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in 2006 and 2007 did not seem to be associated with any discontinuity in the continued decline
in parasite prevalence through to 2010, however the drought years of 2008-2010, typical of
East Africa at this time [19] may have contributed to the lower malaria prevalence in this inter-
val. Parasite prevalence began to rise from 2011 during the continued drought and before the
above average rainfall in 2014.

Vector control. The first use of insecticide treated nets (ITN) on the Kenyan coast was be-
tween 1993-1995 as part of randomized clinical trials in an area north of Kilifi Creek [32] and
in the southern parts of Kwale county [33]. Between 1995 and 2003, social marketing of ITN
and re-treatment of nets achieved very low coverage [20, 34]. From October 2004, ITNs were
offered through maternal and child welfare clinics free of charge. In October 2006, the first
mass, door-to-door campaign to deliver free LLIN as part of a vaccine catch-up strategy was
launched [20]. Routine delivery of ITN continued in subsequent years until a further mass
campaign in March 2012, followed by routine delivery through to December 2014. LLIN distri-
bution only achieved moderate coverage late in 2006 and maintained these levels until March
2012. Reported use of an LLIN by members of the community, 2007-2010, was only 35%-40%
(Fig 4). This might have contributed to an already declining prevalence witnessed during this
period, however it is implausible that the declines from 1997 through to 2005 could have been
associated with ITN distribution, since in 2003 only 3% of rural household members reported
using an ITN.

The mass campaign in March 2012 delivered over 1.5 million LLIN to communities along
the coast. This was the largest single delivery of LLIN, there are no community level data on
coverage, however, 68% of school children reported using a treated net the night before surveys
in 2014. By mid-2014 (28-34 months since delivery), many of these LLINs would have been on
the margins of optimal effectiveness and not adequately replaced though routine distributions.
Plans to replace LLINs through repeat mass campaigns in the Coastal region in 2014 were de-
layed and are now planned for 2015. Bioassays of vector susceptibility to pyrethroids in 2012
showed greater than 95% mortality after 24 hours [Mbogo CNM, unpublished data]. We do
not have any recent information on behavioural adaption of local dominant vectors to ITNs on
the Kenyan Coast. Immediately following the introduction of ITN in Kilifi in 1994, earlier bit-
ing outdoors was recorded [35]. Elsewhere in Kenya the wide-scale use of ITN has been associ-
ated with changing An. gambiae sibling species compositions and feeding behaviours [36].
Nevertheless, malaria prevalence continued to rise from 2011 to 2014, reaching levels higher
than those witnessed in the 1970s when vector control was largely absent.

Drug use and efficacy. The use of CQ and pyrimethamine as prophylaxis or mass-drug
administration were reported at settlement schemes at Sabakai-Malindi in Kilifi County and
Shimba hills in Kwale County as well as part of fortnightly school "treatment parades" during
the early 1970s. Retail sector use of CQ for self-medication had been common for many years
[37-38]. Between 1993 and 1995, 14% of aparasitaemic, afebrile and 44% of febrile children
from the community around Kilifi had detectable levels of CQ in their blood [39]. The first
case of CQ resistance in Kenya was reported in 1978 in a non-immune tourist [40]. In vitro CQ
resistance was detected in semi-immune children along the Kenyan coast in 1982 and first re-
ports of in vivo resistance in 1983 [41]. Resistance among the local parasite populations ex-
panded rapidly, with sequential data suggesting that by 1987 more than 40% of infected
children failed to clear infections within 7 days with standard 25mg/kg base three day treat-
ments [42-44] (Fig 4).

In 1999, CQ was replaced as first line recommended treatment with SP [45], although in
practice SP was being used before this date [38] and CQ was still used by some for periods after
this date [23,46]. Parasites were fully sensitive to SP in 1987, with all infections being cleared
within 7 days and patients remaining uninfected through day 14 [47]. There are fewer
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longitudinal data on SP resistance from the coast, however in vitro and in vivo SP resistance
was reported in 1993 [39,48-49], early treatment failures were 7% in 1997 [50] and failure to
clear infections by day 14, or early treatment failure, remained at 4-7% by 2000-2001[51-52]
(Fig 4). Lower rates of resistance and SP treatment failure were described on the Coast com-
pared to other areas of Kenya by 2001 [52]. The national treatment policy was changed in 2004
recommending the use of Artemether-Lumefanthrine (AL) as first line malaria therapy, how-
ever drug supply, revised guidelines and training were not implemented until the end of 2006
[53] and SP was still being used for treatment up to the beginning of 2007 [54].

It seems plausible that the rapid emergence of resistance to CQ from the early 1980s con-
tributed to the rising parasite prevalence through to the 1990s. Conversely, SP resistance may
not have spread as quickly, and while failing to adequately clear infections its continued use
through to 2007 might have nevertheless had a prophylactic effect that paradoxically contribut-
ed to the declines in malaria prevalence during the 2000s. The triple mutant pfdhfr, encoding
dihydrofolate reductase that confers biological resistance to SP (511/59R/108N haplotype) was
only 37% in 1999 in Kilifi [55]. The pfdhfr quadruple mutant, that renders SP ineffective, has
not been described on the Kenyan Coast [55-56]. SP has a long half-life providing periods of
prophylaxis following single dose administration. On the one hand this long half-life is a threat
to drug resistance since parasites are exposed to low drug concentrations, but on the other
hand may have a benefit in a prophylactic effect which reduces parasites while they remain sen-
sitive [57]. Before SP was replaced with AL, it had not reached complete failure and was widely
available in the retail and private sectors [46,54]. By 2010, SP use for fevers was non-existent
on the coast, although only 24% of fevers in young children were treated with AL [28].

Discussion

Malaria parasite prevalence data assembled over 40 years along the Kenyan coast show cycles
of change. These long-term cycles provide an opportunity to examine the temporal effects of
rainfall, vector control and anti-malarial drug use. It is perhaps most notable that P. falciparum
prevalence was lowest at a time when any specific efforts to prevent infection through vector
control were largely absent but malaria control relied solely on the wide-spread use of CQ or
pyrimethamine for treatment, or occasional mass administration, during the early 1970s. The
1970s and early 1980s were characterized by lower than average annual and long-rains (with
the exception of 1982), but rapidly expanding CQ failure rates. We presume that the latter ex-
plains the escalating parasite prevalence that was observed. For over a decade malaria preva-
lence remained high, with peaks and troughs that correspond with variations in rainfall
patterns. A decline was observed between 1998 and 2003 throughout which ITN coverage was
extremely poor. Rainfall during this period was average, or above-average, with the exception
of a period between 2003 and 2005. This period of decline, however, had one distinguishing
feature, SP had replaced CQ for presumptive fever management and continued to be widely
used up until 2007.

Despite the rapidly changing landscape of ITN use following the October 2006 mass cam-
paigns and sustained free distribution through routine clinics, the reported use of ITN by all-
age groups among rural communities on the Kenyan coast only reached 43% by 2010. This
raises two important aspects of plausible attribution: first, the significant declines in malaria
prevalence started well before significant changes in ITN access; second, while individual clini-
cal protection is likely to have been afforded for those using an ITN during its effective life-
span, the mass effects on parasite transmission would have been minimal before 2012. Theory
suggests that >80% effective coverage (100% efficacious ITN, used every night by every house-
hold occupant) is required to halve infection prevalence in areas where the natural prevalence
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is circa 40% [58-59]. Equally, the rising parasite prevalence from 2011 through to 2014 oc-
curred during a period of significant increases in the delivery of LLIN in March 2012 and
higher personal use. However, it is possible that the LLINs distributed in 2012 were no longer
effective by 2014, when higher than average rainfall was reported. Hence although malaria
transmission would no doubt have been higher still without the mass LLIN distributions, ITN
distributions do not provide an adequate explanation for the trends in malaria prevalence since
1998. These observations correspond with those reported from a single village in Senegal
1990-2012, in some ways a more readily interpreted set of observations, where prevalence
began to decline before large-scale increases in ITN but at a time when CQ was replaced by a
combination of amodiaquine+SP for treatment [60]. We re-emphasize that we are not suggest-
ing that LLIN, when used under optimal conditions do not provide important, immediate clini-
cal protection against malaria. The evidence for protective efficacy is overwhelming from the
Kenyan Coast [32] and elsewhere [61]. Rather we are suggesting that under operational condi-
tions the impact of LLINs may be relatively minor when coverage is lower than trial conditions
and when set against more powerful secular trends.

The ubiquitous use of long half-life drugs such as CQ or SP, and the acquisition of resistance
to these drugs, cannot be ignored as plausible explanations for the low infection rates at the be-
ginning of the time series or the period of declining malaria post-1998. The use of drugs as ad-
juncts to transmission control has a long history in Africa [62-63]. While the intention of CQ
and SP use was largely for treatment only, both drugs were readily available and used in great
quantities by the population who had ready access to these cheap drugs at clinics and over-the-
counter through the retail sector. After 2007, SP was rarely used for fever treatment, although
still used to presumptively treat pregnant women. More importantly, since September 2010, re-
vised standard treatment guidelines have restricted AL to the management of parasite con-
firmed febrile illnesses presenting to the formal health sector [64], a treatment source used by
only 35% of fevers [54]. By 2012, this policy was effectively implemented along the Kenyan
Coast [64]. Although this is a sensible clinical policy for the use of expensive treatments and re-
duces the drug pressure on the parasite population, AL will not have the same level of contact
with circulating symptomatic and asymptomatic parasites as either CQ or SP did and therefore
may be associated with increasing transmission.

Fears of resistance have always mitigated against the wide-scale use of anti-malarial drugs.
However, if combined with at least 90% effective coverage of vector control and if we can avoid
mass treatment with the same anti-malarials that we rely on to treat clinical illness, then mass
treatment might sustain declines in malaria transmission that began in the late 1990s and re-
verse the resurgence in prevalence seen in recent years.

The intensity of malaria parasite transmission along the Kenyan coast is a fragile and com-
plex system. The rise, fall and rise may well form part of much longer transmission cycles not
captured within the present 40 year series. The first surveys undertaken on the coast were in
Digo County (now Kwale) in 1932 [65], around Mombasa Island in 1937 [66], at Durama
(Kwale County) in 1952 [67], and by the Division of Insect Borne Diseases of the Ministry of
Health in 1958 around Malindi [68]. Among 24 communities sampled between 1932 and 1958,
mean P. falciparum infection prevalence was 67% (Range 26%-96%) and 17 of the sampled
communities had infection prevalence above 50%. As such the prevalence during the 1970s
might have been part of a trough, and the peak "epidemic" prevalence recorded during the
1990s a more, historical "natural" level of parasite exposure.

Long-term data within specific areas of Africa allow us to unpack the complexity of trans-
mission cycles with time and provide a framework to interpret change in relation to interven-
tion and climate. There are, however, important caveats. Plausibility analyses are constrained
by the amount and timing of available data, which are easier to assemble for rainfall, but
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considerably harder to compile for periodic surveys of drug sensitivity, drug use, insecticide
susceptibility or the true reported use and effectiveness of personal protection measures. Here
we have presented what evidence exists to provide a series of temporal plausibility explanations
for the changing patterns of parasite prevalence.

We highlight two important considerations for the proposed global malaria eradication
strategy, when applied to Africa; first elimination end points might not be as predictable as we
would like, with natural and extrinsic cycles of transmission confounding models that make
too many assumptions based on very little empirical evidence; and second it will be unaccept-
able in future to rely on a plausibility analysis of imperfect data to decide where on an elimina-
tion pathway a region within a country currently lies and has transitioned from. We must
purposively collect longitudinal data on transmission, the precise effective coverage of control
and contextual data on behavioural (drug access/use or vector feeding patterns) and efficacy
(biological responses of vectors to insecticides and parasites to drugs) if we are to make more
tangible sense of malaria control and elimination efforts over the next two decades.
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